【每日一记6】+第2天+TCP 三次握手(帮助小白快速弄清楚TCP协议)
  

新手643490 15343人觉得有帮助

{{ttag.title}}
本帖最后由 新手643490 于 2020-4-6 12:13 编辑

TCP 三次握手和四次

TCP 虐我千百遍,我仍待 TCP 如初恋。
1、TCP 基本认识
2、TCP 连接建立


  • TCP 连接断开

PS:本次文章不涉及 TCP 流量控制、拥塞控制、可靠性传输等方面知识,这些留在下篇哈!


正文
01 TCP 基本认识
瞧瞧 TCP 头格式
我们先来看看 TCP 头的格式,标注颜色的表示与本文关联比较大的字段,其他字段不做详细阐述。

TCP 头格式
序列号:在建立连接时由计算机生成的随机数作为其初始值,通过 SYN 包传给接收端主机,每发送一次数据,就「累加」一次该「数据字节数」的大小。用来解决网络包乱序问题。
确认应答号:指下一次「期望」收到的数据的序列号,发送端收到这个确认应答以后可以认为在这个序号以前的数据都已经被正常接收。用来解决不丢包的问题。
控制位:
  • ACK:该位为 1 时,「确认应答」的字段变为有效,TCP 规定除了最初建立连接时的 SYN 包之外该位必须设置为 1 。
  • RST:该位为 1 时,表示 TCP 连接中出现异常必须强制断开连接。
  • SYC:该位为 1 时,表示希望建立连,并在其「序列号」的字段进行序列号初始值的设定。
  • FIN:该位为 1 时,表示今后不会再有数据发送,希望断开连接。当通信结束希望断开连接时,通信双方的主机之间就可以相互交换 FIN 位置为 1 的 TCP 段。



为什么需要 TCP 协议?TCP 工作在哪一层?
IP 层是「不可靠」的,它不保证网络包的交付、不保证网络包的按序交付、也不保证网络包中的数据的完整性。
OSI 参考模型与 TCP/IP 的关系
如果需要保障网络数据包的可靠性,那么就需要由上层(传输层)的 TCP 协议来负责。
因为 TCP 是一个工作在传输层可靠数据传输的服务,它能确保接收端接收的网络包是无损坏、无间隔、非冗余和按序的。
什么是 TCP ?
TCP 是面向连接的、可靠的、基于字节流的传输层通信协议。
  • 面向连接:一定是「一对一」才能连接,不能像 UDP 协议 可以一个主机同时向多个主机发送消息,也就是一对多是无法做到的;
  • 可靠的:无论的网络链路中出现了怎样的链路变化,TCP 都可以保证一个报文一定能够到达接收端;
  • 字节流:消息是「没有边界」的,所以无论我们消息有多大都可以进行传输。并且消息是「有序的」,当「前一个」消息没有收到的时候,即使它先收到了后面的字节已经收到,那么也不能扔给应用层去处理,同时对「重复」的报文会自动丢弃。


什么是 TCP 连接?
我们来看看 RFC 793 是如何定义「连接」的:
Connections: The reliability and flow control mechanisms described above requirethat TCPs initialize and maintain certain status information foreach data stream. The combination of this information, includingsockets, sequence numbers, and window sizes, is called a connection.
简单来说就是,用于保证可靠性和流量控制维护的某些状态信息,这些信息的组合,包括Socket、序列号和窗口大小称为连接。

所以我们可以知道,建立一个 TCP 连接是需要客户端与服务器端达成上述三个信息的共识。
  • Socket:由 IP 地址和端口号组成
  • 序列号:用来解决乱序问题等
  • 窗口大小:用来做流量控制



如何唯一确定一个 TCP 连接呢?
TCP 四元组可以唯一的确定一个连接,四元组包括如下:
  • 源地址
  • 源端口
  • 目的地址
  • 目的端口



TCP 四元组
源地址和目的地址的字段(32位)是在 IP 头部中,作用是通过 IP 协议发送报文给对方主机。
源端口和目的端口的字段(16位)是在 TCP 头部中,作用是告诉 TCP 协议应该把报文发给哪个进程。
有一个 IP 的服务器监听了一个端口,它的 TCP 的最大连接数是多少?
服务器通常固定在某个本地端口上监听,等待客户端的连接请求。
因此,客户端 IP 和 端口是可变的,其理论值计算公式如下:
对 IPv4,客户端的 IP 数最多为 2 的 32 次方,客户端的端口数最多为 2 的 16 次方,也就是服务端单机最大 TCP 连接数,约为 2 的 48 次方。
当然,服务端最大并发 TCP 连接数远不能达到理论上限。
  • 首先主要是文件描述符限制,Socket 都是文件,所以首先要通过 ulimit 配置文件描述符的数目;
  • 另一个是内存限制,每个 TCP 连接都要占用一定内存,操作系统是有限的。



UDP 和 TCP 有什么区别呢?分别的应用场景是?
UDP 不提供复杂的控制机制,利用 IP 提供面向「无连接」的通信服务。
UDP 协议真的非常简,头部只有 8 个字节( 64 位),UDP 的头部格式如下:
UDP 头部格式
  • 目标和源端口:主要是告诉 UDP 协议应该把报文发给哪个进程。
  • 包长度:该字段保存了 UDP 首部的长度跟数据的长度之和。
  • 校验和:校验和是为了提供可靠的 UDP 首部和数据而设计。


TCP 和 UDP 区别:
1. 连接
  • TCP 是面向连接的传输层协议,传输数据前先要建立连接。
  • UDP 是不需要连接,即刻传输数据。


2. 服务对象
  • TCP 是一对一的两点服务,即一条连接只有两个端点。
  • UDP 支持一对一、一对多、多对多的交互通信


3. 可靠性
  • TCP 是可靠交付数据的,数据可以无差错、不丢失、不重复、按需到达。
  • UDP 是尽最大努力交付,不保证可靠交付数据。


4. 拥塞控制、流量控制
  • TCP 有拥塞控制和流量控制机制,保证数据传输的安全性。
  • UDP 则没有,即使网络非常拥堵了,也不会影响 UDP 的发送速率。


5. 首部开销
  • TCP 首部长度较长,会有一定的开销,首部在没有使用「选项」字段时是 20 个字节,如果使用了「选项」字段则会变长的。
  • UDP 首部只有 8 个字节,并且是固定不变的,开销较小。


TCP 和 UDP 应用场景:
由于 TCP 是面向连接,能保证数据的可靠性交付,因此经常用于:
  • FTP 文件传输
  • HTTP / HTTPS


由于 UDP 面向无连接,它可以随时发送数据,再加上UDP本身的处理既简单又高效,因此经常用于:
  • 包总量较少的通信,如 DNS 、SNMP 等
  • 视频、音频等多媒体通信
  • 广播通信




为什么 UDP 头部没有「首部长度」字段,而 TCP 头部有「首部长度」字段呢?
原因是 TCP 有可变长的「选项」字段,而 UDP 头部长度则是不会变化的,无需多一个字段去记录 UDP 的首部长度。
为什么 UDP 头部有「包长度」字段,而 TCP 头部则没有「包长度」字段呢?
先说说 TCP 是如何计算负载数据长度:

其中 IP 总长度 和 IP 首部长度,在 IP 首部格式是已知的。TCP 首部长度,则是在 TCP 首部格式已知的,所以就可以求得 TCP 数据的长度。
大家这时就奇怪了问:“ UDP 也是基于 IP 层的呀,那 UDP 的数据长度也可以通过这个公式计算呀?为何还要有「包长度」呢?”
这么一问,确实感觉 UDP 「包长度」是冗余的。
因为为了网络设备硬件设计和处理方便,首部长度需要是 4字节的整数倍。
如果去掉 UDP 「包长度」字段,那 UDP 首部长度就不是 4 字节的整数倍了,所以小林觉得这可能是为了补全 UDP 首部长度是 4 字节的整数倍,才补充了「包长度」字段。
02 TCP 连接建立
TCP 三次握手过程和状态变迁
TCP 是面向连接的协议,所以使用 TCP 前必须先建立连接,而建立连接是通过三次握手而进行的。
TCP 三次握手
  • 一开始,客户端和服务端都处于 CLOSED 状态。先是服务端主动监听某个端口,处于 LISTEN 状态



第一个报文—— SYN 报文
  • 客户端会随机初始化序号(client_isn),将此序号置于 TCP 首部的「序号」字段中,同时把 SYN 标志位置为 1 ,表示 SYN 报文。接着把第一个 SYN 报文发送给服务端,表示向服务端发起连接,该报文不包含应用层数据,之后客户端处于 SYN-SENT 状态。



第二个报文 —— SYN + ACK 报文
  • 服务端收到客户端的 SYN 报文后,首先服务端也随机初始化自己的序号(server_isn),将此序号填入 TCP 首部的「序号」字段中,其次把 TCP 首部的「确认应答号」字段填入 client_isn + 1, 接着把 SYN 和 ACK 标志位置为 1。最后把该报文发给客户端,该报文也不包含应用层数据,之后服务端处于 SYN-RCVD 状态。



第三个报文 —— ACK 报文
  • 客户端收到服务端报文后,还要向服务端回应最后一个应答报文,首先该应答报文 TCP 首部 ACK 标志位置为 1 ,其次「确认应答号」字段填入 server_isn + 1 ,最后把报文发送给服务端,这次报文可以携带客户到服务器的数据,之后客户端处于 ESTABLISHED 状态。
  • 服务器收到客户端的应答报文后,也进入 ESTABLISHED 状态。


从上面的过程可以发现第三次握手是可以携带数据的,前两次握手是不可以携带数据的,这也是面试常问的题。
一旦完成三次握手,双方都处于 ESTABLISHED 状态,此致连接就已建立完成,客户端和服务端就可以相互发送数据了。
如何在 Linux 系统中查看 TCP 状态?
TCP 的连接状态查看,在 Linux 可以通过 netstat -napt 命令查看。
TCP 连接状态查看
为什么是三次握手?不是两次、四次?
相信大家比较常回答的是:“因为三次握手才能保证双方具有接收和发送的能力。”
这回答是没问题,但这回答是片面的,并没有说出主要的原因。
在前面我们知道了什么是 TCP 连接
  • 用于保证可靠性和流量控制维护的某些状态信息,这些信息的组合,包括Socket、序列号和窗口大小称为连接。


所以,重要的是为什么三次握手才可以初始化Socket、序列号和窗口大小并建立 TCP 连接。
接下来以三个方面分析三次握手的原因:
  • 三次握手才可以阻止历史重复连接的初始化(主要原因)
  • 三次握手才可以同步双方的初始序列号
  • 三次握手才可以避免资源浪费


原因一:避免历史连接
我们来看看 RFC 793 指出的 TCP 连接使用三次握手的首要原因
The principle reason for the three-way handshake is to prevent old duplicate connection initiations from causing confusion.
简单来说,三次握手的首要原因是为了防止旧的重复连接初始化造成混乱。
网络环境是错综复杂的,往往并不是如我们期望的一样,先发送的数据包,就先到达目标主机,反而它很骚,可能会由于网络拥堵等乱七八糟的原因,会使得旧的数据包,先到达目标主机,那么这种情况下 TCP 三次握手是如何避免的呢?
三次握手避免历史连接
客户端连续发送多次 SYN 建立连接的报文,在网络拥堵等情况下:
  • 一个「旧 SVN 报文」比「最新的 SYN 」 报文早到达了服务端;
  • 那么此时服务端就会回一个 SYN + ACK 报文给客户端;
  • 客户端收到后可以根据自身的上下文,判断这是一个历史连接(序列号过期或超时),那么客户端就会发送 RST 报文给服务端,表示中止这一次连接。


如果是两次握手连接,就不能判断当前连接是否是历史连接,三次握手则可以在客户端(发送方)准备发送第三次报文时,客户端因有足够的上下文来判断当前连接是否是历史连接:
  • 如果是历史连接(序列号过期或超时),则第三次握手发送的报文是 RST 报文,以此中止历史连接;
  • 如果不是历史连接,则第三次发送的报文是 ACK 报文,通信双方就会成功建立连接;


所以, TCP 使用三次握手建立连接的最主要原因是防止历史连接初始化了连接。
原因二:同步双方初始序列号
TCP 协议的通信双方, 都必须维护一个「序列号」, 序列号是可靠传输的一个关键因素,它的作用:
  • 接收方可以去除重复的数据;
  • 接收方可以根据数据包的序列号按序接收;
  • 可以标识发送出去的数据包中, 哪些是已经被对方收到的;


可见,序列号在 TCP 连接中占据着非常重要的作用,所以当客户端发送携带「初始序列号」的 SYN 报文的时候,需要服务端回一个 ACK 应答报文,表示客户端的 SVN 报文已被服务端成功接收,那当服务端发送「初始序列号」给客户端的时候,依然也要得到客户端的应答回应,这样一来一回,才能确保双方的初始序列号能被可靠的同步。
四次握手与三次握手
四次握手其实也能够可靠的同步双方的初始化序号,但由于第二步和第三步可以优化成一步,所以就成了「三次握手」。
而两次握手只保证了一方的初始序列号能被对方成功接收,没办法保证双方的初始序列号都能被确认接收。
原因三:避免资源浪费
如果只有「两次握手」,当客户端的 SYN 请求连接在网络中阻塞,客户端没有接收到 ACK 报文,就会重新发送 SYN ,由于没有第三次握手,服务器不清楚客户端是否收到了自己发送的建立连接的 ACK 确认信号,所以每收到一个 SYN 就只能先主动建立一个连接,这会造成什么情况呢?
如果客户端的 SYN 阻塞了,重复发送多次 SYN 报文,那么服务器在收到请求后就会建立多个冗余的无效链接,造成不必要的资源浪费。
两次握手会造成资源浪费
即两次握手会造成消息滞留情况下,服务器重复接受无用的连接请求 SYN 报文,而造成重复分配资源。
小结
TCP 建立连接时,通过三次握手能防止历史连接的建立,能减少双方不必要的资源开销,能帮助双方同步初始化序列号。序列号能够保证数据包不重复、不丢弃和按序传输。
不使用「两次握手」和「四次握手」的原因:
  • 「两次握手」:无法防止历史连接的建立,会造成双方资源的浪费,也无法可靠的同步双方序列号;
  • 「四次握手」:三次握手就已经理论上最少可靠连接建立,所以不需要使用更多的通信次数。



为什么客户端和服务端的初始序列号 ISN 是不相同的?
因为网络中的报文会延迟、会复制重发、也有可能丢失,这样会造成的不同连接之间产生互相影响,所以为了避免互相影响,客户端和服务端的初始序列号是随机且不同的。
初始序列号 ISN 是如何随机产生的?
起始 ISN 是基于时钟的,每 4 毫秒 + 1,转一圈要 4.55 个小时。
RFC1948 中提出了一个较好的初始化序列号 ISN 随机生成算法。
ISN = M + F (localhost, localport, remotehost, remoteport)
  • M 是一个计时器,这个计时器每隔 4 毫秒加 1。
  • F 是一个 Hash 算法,根据源 IP、目的 IP、源端口、目的端口生成一个随机数值。要保证 Hash 算法不能被外部轻易推算得出,用 MD5 算法是一个比较好的选择。



既然 IP 层会分片,为什么 TCP 层还需要 MSS 呢?
我们先来认识下 MTU 和 MSS

MTU 与 MSS
  • MTU:一个网络包的最大长度,以太网中一般为 1500 字节;
  • MSS:除去 IP 和 TCP 头部之后,一个网络包所能容纳的 TCP 数据的最大长度;


如果TCP 的整个报文(头部 + 数据)交给 IP 层进行分片,会有什么异常呢?
当 IP 层有一个超过 MTU 大小的数据(TCP 头部 + TCP 数据)要发送,那么 IP 层就要进行分片,把数据分片成若干片,保证每一个分片都小于 MTU。把一份 IP 数据报进行分片以后,由目标主机的 IP 层来进行重新组装后,在交给上一层 TCP 传输层。
这看起来井然有序,但这存在隐患的,那么当如果一个 IP 分片丢失,整个 IP 报文的所有分片都得重传
因为 IP 层本身没有超时重传机制,它由传输层的 TCP 来负责超时和重传。
当接收方发现 TCP 报文(头部 + 数据)的某一片丢失后,则不会响应 ACK 给对方,那么发送方的 TCP 在超时后,就会重发「整个 TCP 报文(头部 + 数据)」。
因此,可以得知由 IP 层进行分片传输,是非常没有效率的。
所以,为了达到最佳的传输效能 TCP 协议在建立连接的时候通常要协商双方的 MSS 值,当 TCP 层发现数据超过 MSS 时,则就先会进行分片,当然由它形成的 IP 包的长度也就不会大于 MTU ,自然也就不用 IP 分片了。
握手阶段协商 MSS
经过 TCP 层分片后,如果一个 TCP 分片丢失后,进行重发时也是以 MSS 为单位,而不用重传所有的分片,大大增加了重传的效率。
什么是 SYN 攻击?如何避免 SVN 攻击?
SYN 攻击
我们都知道 TCP 连接建立是需要三次握手,假设攻击者短时间伪造不同 IP 地址的 SYN 报文,服务端每接收到一个 SVN 报文,就进入SYN_RCVD 状态,但服务端发送出去的 ACK + SYN 报文,无法得到未知 IP 主机的 ACK 应答,久而久之就会占满服务端的 SYN 接收队列(未连接队列),使得服务器不能为正常用户服务。
SYN 攻击
避免 SVN 攻击方式一
其中一种解决方式是通过修改 Linux 内核参数,控制队列大小和当队列满时应做什么处理。
  • 当网卡接收数据包的速度大于内核处理的速度时,会有一个队列保存这些数据包。控制该队列的最大值如下参数:


net.core.netdev_max_backlog
  • SYN_RCVD 状态连接的最大个数:


net.ipv4.tcp_max_syn_backlog

  • 超出处理能时,对新的 SYN 直接回 RST,丢弃连接:


net.ipv4.tcp_abort_on_overflow
避免 SVN 攻击方式二
我们先来看下Linux 内核的 SYN (未完成连接建立)队列与 Accpet (已完成连接建立)队列是如何工作的?
正常流程
正常流程:
  • 当服务端接收到客户端的 SYN 报文时,会将其加入到内核的「 SYN 队列」;
  • 接着发送 SYN + ACK 给客户端,等待客户端回应 ACK 报文;
  • 服务端接收到 ACK 报文后,从「 SVN 队列」移除放入到「 Accept 队列」;
  • 应用通过调用 accpet() socket 接口,从「 Accept 队列」取出的连接。


应用程序过慢
应用程序过慢:
  • 如果应用程序过慢时,就会导致「 Accept 队列」被占满。



受到 SVN 攻击
受到 SVN 攻击:
  • 如果不断受到 SVN 攻击,就会导致「 SYN 队列」被占满。


tcp_syncookies 的方式可以应对 SYN 攻击的方法:
net.ipv4.tcp_syncookies = 1

tcp_syncookies 应对 SYN 攻击
  • 当 「 SYN 队列」满之后,后续服务器收到 SYN 包,不进入「 SYN 队列」;
  • 计算出一个 cookie 值,再以 SYN + ACK 中的「序列号」返回客户端,
  • 服务端接收到客户端的应答报文时,服务器会检查这个 ACK 包的合法性。如果合法,直接放入到「 Accept 队列」。
  • 最后应用通过调用 accpet() socket 接口,从「 Accept 队列」取出的连接。



03 TCP 连接断开
TCP 四次挥手过程和状态变迁
天下没有不散的宴席,对于 TCP 连接也是这样, TCP 断开连接是通过四次挥手方式。
双方都可以主动断开连接,断开连接后主机中的「资源」将被释放。


TCP 四次挥手将于明天写,敬请期待。

157785e8aa481b7c55.png (119.84 KB, 下载次数: 18)

157785e8aa481b7c55.png

894885e8aa85fcdc7e.png (469.06 KB, 下载次数: 17)

894885e8aa85fcdc7e.png

128745e8aa8a30cc2f.png (367.66 KB, 下载次数: 26)

128745e8aa8a30cc2f.png

756455e8aa8c16fe1b.png (93.05 KB, 下载次数: 15)

756455e8aa8c16fe1b.png

675595e8aa8d2c5a36.png (212.72 KB, 下载次数: 19)

675595e8aa8d2c5a36.png

218835e8aa8e1915ee.png (156.2 KB, 下载次数: 21)

218835e8aa8e1915ee.png

86805e8aa8f881cf3.png (286.07 KB, 下载次数: 22)

86805e8aa8f881cf3.png

423965e8aa90c07490.png (243.69 KB, 下载次数: 19)

423965e8aa90c07490.png

打赏鼓励作者,期待更多好文!

打赏
1人已打赏

807710 发表于 2020-5-27 09:52
  
太专业了
蟲爺 发表于 2021-9-7 23:09
  
感谢分享
发表新帖
热门标签
全部标签>
每日一问
技术盲盒
干货满满
技术笔记
新版本体验
产品连连看
功能体验
2023技术争霸赛专题
技术咨询
信服课堂视频
标准化排查
社区帮助指南
秒懂零信任
自助服务平台操作指引
答题自测
安装部署配置
上网策略
SANGFOR资讯
通用技术
技术晨报
GIF动图学习
VPN 对接
项目案例
专家分享
畅聊IT
专家问答
技术圆桌
在线直播
MVP
网络基础知识
升级
安全攻防
测试报告
日志审计
问题分析处理
流量管理
每日一记
运维工具
云计算知识
用户认证
原创分享
解决方案
sangfor周刊
技术顾问
信服故事
SDP百科
功能咨询
终端接入
授权
设备维护
资源访问
地址转换
虚拟机
存储
迁移
加速技术
排障笔记本
产品预警公告
玩转零信任
信服圈儿
S豆商城资讯
技术争霸赛
「智能机器人」
追光者计划
深信服技术支持平台
答题榜单公布
纪元平台
卧龙计划
华北区拉练
天逸直播
以战代练
山东区技术晨报
文档捉虫活动
齐鲁TV
华北区交付直播
每周精选

本版版主

12
185
6

发帖

粉丝

关注

本版达人

LoveTec...

本周分享达人

新手24116...

本周提问达人